
Online Packet Scheduling with Hard Deadlines in
Multihop Communication Networks

Zhoujia Mao, C. Emre Koksal, Ness B. Shroff
E-mail: maoz@ece.osu.edu, koksal@ece.osu.edu, shroff@ece.osu.edu

Abstract—The problem of online job or packet scheduling with
hard deadlines has been studied extensively in the single hop set-
ting, whereas it is notoriously difficult in the multihop setting. This
difficulty stems from the fact that packet scheduling decisions at
each hop influences and are influenced by decisions on other hops
and only a few provably efficient online scheduling algorithms
exist in the multihop setting. We consider a general multihop
network topology in which packets with various deadlines and
weights arrive at and are destined to different nodes through
given routes. We study the problem of joint admission control and
packet scheduling in order to maximize the cumulative weights of
the packets that reach their destinations within their deadlines.
We first focus on uplink transmissions in the tree topology
and show that the well known earliest deadline first algorithm
achieves the same performance as the optimal off-line algorithm
for any feasible arrival pattern. We then address the general
topology with multiple source-destination pairs, develop a simple
online algorithm and show that it is O(PM log PM)-competitive
where PM is the maximum route length among all packets. Our
algorithm only requires information along the route of each packet
and our result is valid for general arrival samples. Via numerical
results, we show that our algorithm achieves performance that is
comparable to the non-causal optimal off-line algorithm. To the
best of our knowledge, this is the first algorithm with a provable
(based on a sample-path construction) competitive ratio, subject
to hard deadline constraints for general network topologies.1

I. INTRODUCTION

We consider a multihop network in which nodes receive
packets with various (hard) deadlines, enqueued at the inter-
mediate nodes through multiple hops along given routes to
given destinations. We assume a time slotted system in which
each packet has an identical (unit) length and each link in the
network can serve an integer number of packets at a given
time slot. Each packet has a certain weight and a deadline
and we address the problem of scheduler design in order to
maximize the total weight over the packets that are successfully
transferred to their destinations within their deadlines. We first
focus on the tree topology and show that the Earliest Deadline
First (EDF) algorithm achieves the same performance as the
optimal off-line algorithm for any feasible or under-loaded
(i.e., there exists an off-line algorithm under which all jobs
can be served before their deadlines) network arrival pattern.
Next, we study the general topology with multiple source-
destination pairs. We develop a low-complexity on-line joint
admission control and packet scheduling scheme and evaluate

1This work has been supported in part by the Army Research Office MURI
Award W911NF-08-1-0238, and NSF grants CNS-1065136 and CNS-1012700.

its competitive ratio2 with respect to the cumulative weight
achieved by the optimal off-line algorithm. Our scheme only
requires information of the packet queues along the route of
each packet. To the best of our knowledge, this is the first
scheme with a provable (based on a sample-path construction)
competitive ratio in general network topologies.

The on-line job scheduling problem with hard deadlines is
gaining increasing importance with the emergence of cloud
computing, large data centers, and grid communications. In
such applications, a large amount of time-sensitive information
needs to be carried among servers and users over a mainly-
wired infrastructure. Meeting the deadline requirements of these
jobs with an efficient use of resources requires a careful design
of schedulers that decide on how and when data should be
transferred over the network. Due to the large volume of data,
the complexity of schedulers should be kept low to reduce
the amount of energy consumed by these data centers. To that
end, our objective is to develop a low-complexity and provably
efficient scheduler and an associated admission controller for
deadline-constrained data.

On-line job scheduling has been a widely-studied problem.
Since the seminal work in [1], various versions of the problem
for single hop systems have been considered. It has been shown
that EDF has the same performance as the optimal off-line
algorithm [1, 2] for the scenario in which the system is under-
loaded. When considering over-loaded arrivals (i.e., the case
when even the best off-line policy drops some jobs), there
is the additional question of whether the controller needs to
decide to accept or reject a job upon arrival, i.e., admission
control. With the constraint that the admission controller and
the scheduler do not have to decide on a job’s admission into
the system and the period that it is scheduled upon arrival, it
is shown in [3] that 1

4 is the best competitive ratio among all
on-line algorithms and an online algorithm is provided [4] to
achieve this ratio. With this constraint the problem is addressed
in [5, 6]. In addition to immediate decisions, the model studied
in [7] imposes a penalty on the unfinished workload, and the
authors propose an on-line algorithm with competitive ratio
3−2

√
2 and show that this ratio is the best achievable ratio for

all on-line algorithms. Within the single hop setting, similar
problems of job scheduling have been studied in [8–12] for
the scenario with parallel processors, where the controller
needs to decide which machine to process each job as well

2The competitive ratio of an on-line algorithm is the minimum ratio of
the revenue of the on-line algorithm to the revenue of the optimal off-line
algorithm, where the minimization is over all possible arrival patterns.

2

as scheduling and admission control. An on-line algorithm
requiring immediate decision upon job arrival is proposed in [9]
with an asymptotic competitive ratio e−1

e . It is later shown
in [10] that this ratio is the maximum achievable ratio for
any on-line algorithm. In [11, 12] a penalty-based model is
introduced for unfinished workload and competitive ratios were
derived for various algorithms.

All of the works mentioned above require continuous pro-
cessing of jobs, i.e., each job can be processed, paused, and
restarted at any point in time preemptively. In [13], a slotted
single queue system is considered in which all jobs have
unit length and uniform weights, and it is shown that EDF
has the same performance as the optimal off-line algorithm.
In [14, 15], the same discrete model is considered with jobs
having heterogenous weights and it is shown that the achievable
competitive ratio is within [0.5,

√
5−1
2]. Furthermore, it is shown

that the lower bound 0.5 is achieved by the largest weight first
policy and a lex-optimal scheduling policy is provided.

There have also been a few works that have investigated
the problem of scheduling jobs with deadlines in the multihop
setting. In [16], the authors investigate the problem of online
scheduling of sessions with known injection rate, a given
deadline and fixed routes. They first give a necessary condi-
tion for feasibility of sessions and then propose an algorithm
under which most sessions are scheduled without violating the
deadline with high probability when the necessary condition for
feasibility is satisfied. In [17], it has been shown that a modified
version of EDF achieves the same performance as the optimal
off-line algorithm for any arrival sample path under an uplink
tree with uniform link capacities and packet weights. In the first
part of our paper, we consider under-loaded arrivals but allow
links to have heterogenous link capacities and show that EDF
has the same performance as that of the optimal off-line algo-
rithm. In a general multihop network, simple heuristics such
as EDF, minimum number of remaining hops first, minimum
remaining time till expiration first, or Largest Weight First do
not have provable efficiency. Achieving provable efficiency in
a general network topology requires a joint consideration of
the factors such as deadlines, packet weights, and path lengths
etc. Our approach to the problem with the general multihop
topology is motivated by competitive routing in virtual circuit
network [18]. In the competitive routing model, link bandwidth
is the resource to be allocated. By viewing the time slots as
resources, the packet scheduling problem can be transferred
to a similar resource allocation problem. However, the model
of packet scheduling with deadlines is different from that of
routing in virtual circuit networks. In virtual circuit networks,
the constraint is the link bandwidth. In contrast, here, the packet
scheduling problem is constrained by the deadlines. It cannot be
mapped to a bandwidth constraint problem by simply viewing
time slots as resources since each packet and its scheduling
decision have an impact on the potential time resources of
other packets. However, as we show in the paper, the idea
used in competitive routing can still be applied with clever
modifications to develop a competitive ratio based framework

for packet scheduling with deadlines. Our approach has a
couple of fundamental differences with the one in [16]. Firstly,
our scheme is not based on the prior knowledge of the packet
injection rates, as is the case in [16]. We schedule packets
individually, which allows for the possibility of the scheduling
of packets that belong to an infeasible session. Secondly, our
performance analysis is sample-path based, whereas in [16], the
authors follow a probabilistic approach.

Other studies that focus on wireless resource allocation
with hard deadlines include [19–26]. In all of these studies
except [26], either the notions of deadlines are more restricted
or the flows are single hop. In [26], a utility maximization
framework is developed under a general multihop wireless
network with an arbitrary deadline model for arrivals, but
the scheduler in their proposed algorithm needs to enumerate
over all possible schedules that satisfy the interference and
deadline constraints, which is extremely complex. Furthermore,
the authors in [26] are only interested in the feasible (under-
loaded) arrival regions.

To summarize our main contributions in this paper:

• We show that EDF has the same performance of the
optimal off-line algorithm under an uplink tree with het-
erogenous link capacities for any under-loaded arrivals.

• We develop a competitive ratio based admission control
and packet scheduling framework that has low complexity
and is O(PM log PM)-competitive3 where PM is the max-
imum route length among all packets, under general multi-
hop network topologies and arrival samples. To the best of
our knowledge, this is the first work on packet scheduling
problems with hard deadlines in a general network setting
under a sample path argument. This framework also has a
nice structure to be extended to wireless networks.

II. PROBLEM STATEMENT

We study the packet scheduling problem with hard deadlines
in multihop networks. We assume a time slotted system. The
arrival sample path consists of K packets where each packet
i ∈ {1, 2, . . . , K} (the packet set is indexed in the order
of arrival times of the packets) is associated with a triplet
(ai, di, ρi). Here, ai and di are the arrival time and the deadline,
respectively, both of which are given in slot indices. We allow
each packet i to have a weight ρi, which is an arbitrary real
number that represents the importance of the packet. We assume
infinite packet buffers at all nodes. If packet i is still at a non-
destination node by the end of slot di, then it expires and is
deleted from the network. Note that, when all packets have
finite deadlines, the packet queues in the network will always
remain bounded. We assume that each packet has an identical
(unit) length and each link in the network can serve an integer
number (possibly different for different links) of packets at a
given time slot. Let us define the indicator function for any
policy p, to identify whether a packet reaches its destination

3O(x)-competitive means the competitive ratio goes to 0 at least as fast
as x →∞.

3

within its deadline as:

1p
i =

{
1 if i reaches destination before the end of di

0 otherwise
(1)

and the weighted revenue gained by the successfully received
packets as:

Rp =
∑

i∈{1,2,...,K}
ρi1

p
i . (2)

Our objective is to solve maxp Rp.

III. OPTIMAL PACKET SCHEDULING IN UPLINK TREE
NETWORKS WITH UNDER-LOADED ARRIVALS

In this section, we consider an uplink tree network as shown
in Fig. 1. Each packet i arrives at an arbitrary non-root node in
slot ai and is destined to the root through multiple hops within
its deadline di. We assume uniform weight here for all packets,
then our objective reduces to maximizing the throughput, i.e.,
maxp Rp ≡ maxp

∑
i∈{1,2,...,K} 1p

i .

root

ak dk,

packet k

j

j
p

1 = 1

n

m

1 2 3

Fig. 1. An Uplink Wired Tree

Definition 1: The slack time of packet i in time slot t ∈
[ai, di] is defined as di − t − hi(t) + 1, where hi(t) is the
number of hops from the node at which packet i resides in
time slot t to the destination of i.

Definition 2: Policy p is called a work-conserving packet
scheduling policy if it keeps each link fully utilized in each time
slot, as long as the queue feeding the link contains sufficiently
many unexpired packets.

Lemma 1: For any non-work-conserving policy, there exists
a work conserving policy that achieves an identical or higher
throughput under any given arrival pattern.

The intuition behind Lemma 1 is fairly clear, since non-work-
conserving policies waste resources unnecessarily under all
arrival patterns. The detailed proof can be found in [27]. From
Lemma 1, we only need to focus on work conserving packet
scheduling policies to solve the problem, i.e., maxp Rp ≡
maxp∈C Rp, where C is the set of work conserving packet
scheduling policies.

Definition 3: A work conserving earliest deadline first (WC-
EDF) policy is one in which each node transmits the largest
possible set of packets that the link capacity allows with the
earliest deadlines among all the packets in its packet queue.

Theorem 1: [17] For an uplink tree with identical link capac-
ity, given any arrival sample path (either under-loaded or over-
loaded), the WC-EDF policy that only serves packets with non-
negative slack times in each slot achieves the same performance
as the optimal off-line algorithm in maximizing the throughput.

This theorem, proven in [17], is for an uplink tree with iden-
tical link rates. In the following theorem, we extend the result
to the scenario where links may have different rates (as long as
they are integer number of packets/time slot) for under-loaded
traffic. Since Theorem 1 does not hold for heterogeneous link
rates for general arrivals, the proof techniques for Theorem 2
is fairly different from that in Theorem 1.

Theorem 2: For an uplink tree with possibly different link
capacities that are integer number of packets per time slot, for
all under-loaded arrivals, the WC-EDF policy ensures that all
packets reach their destinations before their deadlines.

The detailed proof of Theorem 2 can be found in Ap-
pendix A. Note that the proof of Theorem 2 is completely
different from that of Theorem 1.

Theorem 2 shows that under WC-EDF, all packets in any
under-loaded arrival sample reach their destinations before
their deadlines and hence generates the same throughput as
the optimal off-line algorithm. Theorem 2 can then be used
to test whether an arrival sample is feasible. Note that, both
Theorem 1 and Theorem 2 are not generalizable to a general
network topology. Indeed, it can be shown that even for simple
topologies, such as the followings, there exists no on-line
algorithm that has the same performance as the optimal off-
line algorithm by constructing appropriate arrival patterns.

• Down-link tree even with homogeneous link capacity and
under-loaded arrivals

• Line network with multiple flow destinations even with
under-loaded arrivals

• Uplink tree with heterogeneous link capacities and over-
loaded arrivals

The details of all three of these examples can be found in [27].
For brevity, here, we focus only on the line network with
multiple destinations, and show that no online algorithm can
have the same performance as the optimal off-line algorithm
even for under-loaded arrivals, by constructing sample arrivals
(that the online algorithms can not support) via an adversary.

Example 1: Consider a line network 3 → 1 → 2 and sup-
pose that the link capacity of each link is 1. Initially at node 3,
there are two packets k1 and k2 with deadline dk1 = 2, dk2 = 4
whose destinations are node 1 and 2, respectively. Suppose that
node 3 transmits k1 to node 1 in time slot 1, and that there is
no arrival by the end of slot 1, then node 3 transmits k2 to node
1 in slot 2. Let an adversary inject a packet k3 with deadline
dk3 = 3 whose destination is node 2, at node 1 by the end of
slot 2, then node 1 transmits k3 to node 2 in slot 3. Further let
the adversary inject a packet k4 with deadline dk4 = 4 whose
destination is node 2, at node 1 by the end of slot 3, then by
the end of slot 4, either k2 or k4 expires. However, this arrival
sample is feasible since the off-line algorithm transmits k2 in
slot 1 and all four packets are able to reach their destinations
within their deadlines. Similarly if node 3 transmits k2 to node
1 in time slot 1, then let the adversary inject a packet k3 with
deadline dk3 = 2 (whose destination is node 1), at node 3 by
the end of slot 1, then by the end of slot 2, either k1 or k3

expires. However, this arrival sample is also feasible since the

4

off-line algorithm transmits k1 in slot 1 and all three packets
are able to reach their destinations before their deadlines. This
means under this scenario, no matter what online decision node
3 makes in slot 1, the adversary can always chooses future
arrivals so that the online decision is worse than the optimal off-
line algorithm even though the whole arrival sample is under-
loaded.

One of the main conclusion one can draw from this section is
that, other than some particular settings, there exists no on-line
algorithm that achieves the same performance as an optimal off-
line algorithm. This motivates our study for developing on-line
algorithms that have a provable (non-zero) competitive ratio,
relative to the optimal off-line algorithm for the general network
topology and arrival patterns.

IV. COMPETITIVE PACKET SCHEDULING FOR GENERAL
TOPOLOGIES AND ARRIVAL PATTERNS

In this section, we consider a general network topology
represented by a directed graph as shown in Fig. 2. We assume
that each packet i is routed through a given path4 Pi from its
source node to its destination, where Pi denotes the set of links
through which the packet is routed in order. For any link l ∈ Pi,
let hl(i) denote the hop index of link l in the route of packet i.
We assume in this section that each link transmits at most one
packet in each slot5 for ease of notation. We allow packets to
have different weights ρi, i = 1, 2, . . . , K, and our objective
function is as stated in Equation (2).

dest 1

dest 2

src 2

src 1ai di, Pi,i, ρ
ipacket

Fig. 2. General Network Topology with Multiple Source-Destination Pairs

Upon arrival of each packet, the controller of its source node
decides whether to accept or reject this packet. If there are
multiple packets arriving at the network in the same time slot,
we assume the controllers of different packets make decisions at
different instances (in the same time slot) in the same order as
the packet index. If packet i is accepted, then each link l ∈ Pi

needs to reserve a time slot so that packet i will be transmitted
through link l in this reserved slot. The reserved time slot is
not changed in the subsequent time slots. Let ti(l) denote the
index of this reserved time slot in which packet i is transmitted
through link l ∈ Pi if i is accepted. Define for any i, j, l the

4Our framework can be generalized when there are multiple candidate
routes by choosing the route with minimum packet cost as defined in Algo-
rithm 1 for any accepted packet.

5Our results can be easily generalized when link rates are distinct, as long
as they are integer number of packets per time slot.

following indicator

Il(i, j) =





1 packets i, j are accepted; l ∈ Pi, l ∈ Pj ;
tj(l) ∈ [ai + (hl(i)− 1)si, ai + hl(i)si − 1]

0 otherwise
(3)

where

si =
⌊

di − ai + 1
|Pi|

⌋
(4)

is the average slack time per hop for packet i with |Pi| as the
number of total hops on its route. Note that di − ai + 1 is
the maximum allowable end to end delay for packet i in the
network. If we divide this delay evenly on each hop, then si is
the maximum allowable delay on each hop and [ai + (hl(i)−
1)si, ai + hl(i)si − 1] is the set of time slots that i can use to
be transmitted through link l. From another perspective, a time
slot can be viewed as a resource and [ai + (hl(i)− 1)si, ai +
hl(i)si − 1] is then the set of available resources for packet i
and si is the total amount of resources at each link on the route
of i. When both i and j are accepted and link l is in the route
of both i and j, if the reserved transmission slot of j takes one
resource in i’s resource set at link l, then the indicator Il(i, j)
becomes 1. This means packet j consumes one unit of resource
of packet i at link l. Furthermore, we define the cost of packet
j taking a resource of i at link l as

cl(i, j) = si(µλl(i,j) − 1), (5)

where µ is a control parameter (we will discuss how to choose
the value of µ later when we analyze the performance of our
algorithm proposed later in this section) and

λl(i, j) =
∑

m<j

Il(i,m)
si

(6)

is the fraction of i’s resources that have already been taken
before arrival of packet j at link l. By letting λl(i, 1) = 0 for
all i, l, we have the following recursive relationship:

λl(i, j + 1) = λl(i, j) +
Il(i, j)

si
, (7)

i.e., λl(i, j) and thus cl(i, j) is increasing in j for any given i
and l.

Before describing our algorithm, we further need to define
for i 6= j that

Ĩl(i, j) =





1 the intersection of the intervals[
aj + hl(j)− 1, dj − |Pj |+ hl(j)

]
and[

ai + (hl(i)− 1)si, ai + hl(i)si − 1
]

are nonempty; l ∈ Pi, l ∈ Pj ; i is accepted
0 otherwise

(8)

and

Ĩl(j, j) = 1, ∀j, l ∈ Pj . (9)

5

Note that
[
ai +hl(i)−1, di−|Pi|+hl(i)

]
is the region of time

slots that packet i can possibly stay at link l for it to reach the
destination before its deadline under any algorithm. Define

Si = di − ai − |Pi|+ 2 (10)

to be the maximum possible delay of packet i at each link
l ∈ Pi and it is easy to see that si ≤ Si for all i. Variable
Ĩl(i, j) indicates whether packet j may take a resource of packet
i under any possible scenario. Note that tl(j) ∈ [aj + hl(j)−
1, dj − |Pj | + hl(j)

]
for all l ∈ Pj for any scheduler, since

allocating any time slot out of this interval to transmit j over
l ∈ Pj will lead to the expiration of j. Hence, one can see that
Il(i, j) ≤ Ĩl(i, j) for all i, j, l from Eqs. (3), (8), and (9).

Algorithm 1 Admission Control and Packet Scheduling

Upon arrival of packet j, let Costj :=
∑

l

∑
i≤j

Ĩl(i,j)
si

cl(i, j):
1) If Costj > ρj , then reject j;
2) If Costj ≤ ρj , then accept j and let tl(j) be the empty time
slot with the largest index in [aj+(hl(j)−1)sj , aj+hl(j)sj−1].
Put packet j into tl(j), ∀l ∈ Pj ;
3) Any accepted packet j is transmitted through link l ∈ Pj at
time slot tl(j).

Our admission control and packet scheduling algorithm is
described in Algorithm 1. Note that from Equation (8), we
have

∑
l

∑
i≤j

Ĩl(i,j)
si

cl(i, j) =
∑

l∈Pj

∑
i≤j

Ĩl(i,j)
si

cl(i, j), i.e.,
the calculation only needs information on the route of packet j.
For each l ∈ Pj , the calculation of the term

∑
i≤j

Ĩl(i,j)
si

cl(i, j)
only requires the information of packets that may route through
link l. It is also easy to see that the calculation of the cost term
does not require future information for times after the arrival
of each packet j, i.e., Algorithm 1 is on-line. Furthermore,
λl(i, j+1), i ≤ j is calculated from λl(i, j) using Equation (7)
when packet j is processed by Algorithm 1, and Equation (6)
is only used to calculate λl(j, j) upon j’s arrival.

The basic intuition behind our algorithm is simple: We
first allocate the end-to-end delay of each packet evenly over
the links along its path. The algorithm then schedules the
transmission for an accepted packet in a slot within its allocated
time region at each link. Consequently, the end-to-end deadline
constraint is met. With this approach, the natural questions are:
(1) When a packet j is accepted, is there always an empty (non-
reserved) slot in [aj +(hl(j)−1)sj , aj +hl(j)sj−1], ∀l ∈ Pj

so that we can reserve a slot tl(j) for j at link l? (2) What
is the performance of Algorithm 1 compared to the optimal
off-line algorithm? We answer these questions in the following
theorem. Note that we measure the performance in terms of the
competitive ratio: if r is the competitive ratio achieved by our
algorithm, then R ≥ rR∗, where R is the weighted revenue
of successful reception achieved by Algorithm 1 and R∗ is
the weighted revenue of successful reception achieved by the
optimal off-line algorithm.

Theorem 3: If the arrival sample satisfies PM < 2sm−1

2sM(ρM
ρm

) ,

where PM = maxi |Pi| is the maximum route length,

sm = mini si is the minimum average slack time, sM =
maxi si is the maximum average slack time, ρm = mini ρi

is the minimum weight and ρM = maxi ρi is the maxi-
mum weight among all packets, then every packet accepted
by Algorithm 1 reaches its destination before its dead-
line. Furthermore, Algorithm 1 achieves competitive ratio

r ,
[
2

(
2SM

sm
+ 1

)(
1 + sM

ρM

ρm

)
log(µ) + 1

]−1

with SM =
maxi Si as the maximum possible delay per hop among all
packets.

Hence, our algorithm is O(PM log PM)-competitive, where
PM is the maximum route length. The assumption PM <

2sm−1

2sM(ρM
ρm

) in Theorem 3 imposes an upper bound on the

maximum route length PM for the validity of the provided
competitive ratio. Roughly, PM must be upper bounded by an
exponential function of the minimum average slack time sm.
In Section V, we can see from the numerical examples that our
algorithm achieves a high performance relative to the optimal
off-line algorithm, even when this condition is not satisfied.

To prove this theorem, we first make the following trans-
formation. With condition PM < 2sm−1

2sM(ρM
ρm

) , we can choose

µ so that log(µ) ≤ sm and µ > 2ρM

ρm
sMPM + 1 ≥ 1,

i.e., µ−1
2PM

> ρM

ρm
sM ≥ sM . Then, we make the following

transformation. First, we choose a factor, F ∈
[

2PM sM

ρm
, µ−1

ρM

)
,

and normalize the weight ρi for all i with factor F and use
Fρi, instead of ρi for all i in the problem (the objective is
still equivalent to the original one). With this change, we have
log(µ) ≤ sm ≤ sM ≤ ρm

2PM
≤ ρM

2PM
< µ−1

2PM
, i.e.,

Il(i, j) ≤ 1 ≤ sm

log(µ)
≤ si

log(µ)
, ∀i, j; (11)

2|Pj |sM ≤ 2PMsM ≤ ρm ≤ ρj , ∀j; (12)
ρj ≤ ρM < µ− 1, ∀j. (13)

We need the following lemmas to prove Theorem 3:
Lemma 2: If j is accepted by Algorithm 1, then there exists

at least one time slot in the interval [aj + (hl(j) − 1)sj , aj +
hl(j)sj−1] that has not been reserved by other accepted packets
for each l ∈ Pj .

Lemma 3: Let Q denote the set of packets that are rejected
by Algorithm 1 but successfully received by the optimal off-
line algorithm, then

∑
j∈Q ρj ≤

(
2SM

sm
+ 1

) ∑
l

∑
i cl(i,K),

where K is the last packet of the arrival sample.
Lemma 4: Let A denote the set of packets that

are accepted by Algorithm 1, then
∑

l

∑
i cl(i,K) ≤

2
(
1 + sM

ρM

ρm

)
log(µ)

∑
j∈A ρj .

Proofs of Lemmas 2, 3 and 4 can be found in Appendix B, C
and D, respectively.
Proof of Theorem 3: From Lemma 2, we see that for every
accepted packet j, there exists an unreserved time slot tl(j) in
the interval [aj+(hl(j)−1)sj , ai+hl(j)sj−1] for transmission
at any l ∈ Pj . By the way of allocating the total slack time on
each hop, it is apparent that j can reach its destination before
deadline dj if it is transmitted through l in slot tl(j) for all
l ∈ Pj .

6

Lemma 2 completes the proof of the first part of the theorem.
The remaining part is proved in two steps: First we upper bound
the weighted revenue of packets that are rejected by our on-line
algorithm but have successful receptions by the optimal off-line
algorithm as in Lemma 3. We then lower bound the weighted
revenue of packets that are accepted by our on-line algorithm
as in Lemma 4. Combining the Lemmas 2, 3 and 4, we have

R∗ ≤ (∑

j∈Q

+
∑

j∈A

)
ρj ≤

(
2
SM

sm
+ 1

) ∑

l

∑

i

cl(i,K) +
∑

j∈A

ρj

≤
[
2

(
2
SM

sm
+ 1

)(
1 + sM

ρM

ρm

)
log(µ) + 1

] ∑

j∈A

ρj

=
[
2

(
2
SM

sm
+ 1

)(
1 + sM

ρM

ρm

)
log(µ) + 1

]
R =

R

r
.

Note that sm ≥ 1 for a slotted system. From Eqs. (4)
and (10), we have Si ≤ (si + 1)|Pi| − |Pi| + 1 ≤ si|Pi| + 1
and then SM ≤ sMPM + 1. Recall that µ > 2ρM

ρm
sMPM + 1.

By letting µ = 2ρM

ρm
sMPM + 1 + ε, where ε > 0 can be

arbitrarily small, we have r ≥
[
2
(
2(sMPM + 1) + 1

)(
1 +

ρM

ρm
sM

)
log

(
2ρM

ρm
sMPM +1+ε

)
+1

]−1

. Hence, our algorithm
is O(PM log PM)-competitive.

Our competitive ratio based framework of packet schedul-
ing with deadlines is motivated by the competitive routing
model [18]. However, there are significant differences between
the two models: 1) The amount of link bandwidth is fixed
and known at the beginning in the routing model, but the time
slot resources are related to the accepted packets and are then
related to the algorithm itself; 2) An earlier packet may use the
resource of a later packet, which brings difficulties to making
online decisions; 3) There are multiple ways of allocating the
total end-to-end delay dj − aj + 1 of each packet j on each
hop, which brings more complexities.

In Algorithm 1, we allocate the total end-to-end delay of
each packet evenly on each hop, i.e., every accepted packet j
reserves slot tl(j) in [aj +(hl(j)−1)sj , aj +hl(j)sj−1] at link
l ∈ Pj . We briefly explain the reason for evenly allocating the
total end-to-end delay on each hop as follows: Suppose we use
a general way of allocating the total end-to-end delay of packet
j. Let sl,j denote the slack time allocated to link l ∈ Pj , then
we always have

∑
l∈Pj

sl,j = dj − aj + 1. Note that the maxi-
mum allowable delay on each hop Sj remains unchanged and
SM = maxj Sj . However, the maximum and minimum per hop
slack time are changed to sM = maxj maxl∈Pj

sl,j ≥ maxj sj

and sm = minj minl∈Pj sl,j ≤ minj sj since minl∈Pj sl,j ≤
sj = bdj−aj+1

|Pj | c ≤ maxl∈Pj sl,j . This means allocating the
total slack time evenly will lead to smallest sM and SM

sm
, i.e.,

largest r (better lower bound) as stated in Theorem 3 among
all methods of allocating the slack time.

Note that r characterizes the worst-case performance ratio
between our online algorithm and the optimal off-line algo-
rithm. When the route length PM , the average slack times sM

and the maximum allowable per hop delay to the smallest
average slack time ratio SM

sm
are larger, an accepted packet

has more freedom to reserve a transmission slot and is more
likely to deviate from the off-line algorithm while the online
algorithm has no information of future arrivals to help make
the decisions. Similarly, if the ratio of weights ρM

ρm
is large,

then the difference of the contribution of each packet becomes
large and the online decision becomes more difficult. Therefore,
when these parameters increase, r decreases and the worst-
case performance of the online algorithm tends to become
worse. From the discussion in Section III, in a general multihop
topology, there is usually no online algorithms with competitive
ratio 1. It is then interesting to ask: What is the largest
achievable value for r? Is O(PM log PM)-competitive already
the best an online algorithm can do under a general multihop
network topology? In the literature of competitive analysis
[3, 18], the upper bound of competitive ratio is usually derived
by a converse via an adversary argument. We leave these
questions to our future work. Although the theoretical worst-
case ratio can be small, in Section V, we see from the numerical
examples that by appropriately choosing the control parameter
log(µ) and normalizing the weights ρi, i = 1, 2, . . . , K, our
algorithm achieves good performance compared to the optimal
off-line algorithm in practice.

V. NUMERICAL EXAMPLES

We first consider an uplink tree shown in Fig. 3 (a) with
homogeneous link rates. There are 10000 packets with ho-
mogeneous weights and the inter-arrival times of packets are
chosen to be 0 w.p. 1

2 and 1 time slot w.p. 1
2 . We generate

the initial slack time (the difference between the deadline
and the arrival time, increased by 1) uniformly at random
between 24 and 30. The source node of each packet is chosen
uniformly at random over all non-root nodes. It is easy to
see that the maximum route length PM = 3 for all packets
in this network. Thus, the maximum average slack time is
sM = 30 and the minimum average slack time is sm = 8,
i.e., PM = 3 < 2sm−1

2sM

(
ρM
ρm

) = 255
60 . As given in the proof of

Theorem 3, we choose the control parameter log(µ) = 7.5 so
that log

(
2ρM

ρm
sMPM + 1

)
= 7.4 < log(µ) ≤ sm = 8. From

Fig. 4 (a), we can see that by increasing the normalization
factor of the packets’ weight, the performance of our online
algorithm increases and achieves more than 90% of the optimal
off-line algorithm (the optimal value is obtained using the
algorithm in Theorem 1). When the normalized weight is large
enough, almost all packets are admitted and this result shows
that admission control is only necessary in the proof of worst-
case lower bound and our algorithm can still be efficient without
the admission control component in practice.

Similarly, for another choice of slack times, generated
uniformly at random between 0 and 5, when the condition
PM < 2sm−1

2sM

(
ρM
ρm

) is violated, our online algorithm still achieves

about 80% of the optimal algorithm.
We then consider a general topology as shown in Fig. 3

(b). There are 10000 packets and the inter-arrival times of
packets are chosen to be 0 w.p. 1

2 and 1 time slot w.p. 1
2 . The

packets weights are generated uniformly at random between 1

7

2

5

1

3 4

6
7 8

(a)

1

4

7

5

1

6

2

3

2

3

4

5

6

7

8

9

10

11

12

(b)

Fig. 3. Example topologies: (a) An Uplink Wired Tree, and (b) A General
Wired Mutlihop Network with Multiple Source-Destination Flows

and 100 with ρM

ρm
= 100. The given route Pi of each packet i

is randomly generated with 1 ≤ |Pi| ≤ 3 in the setup stage. We
first generate the initial slack time uniformly at random between
45 and 50 so that the condition PM = 3 < 2sm−1

2sM

(
ρM
ρm

) = 215−1
10000

is satisfied. Note that the theoretical region of the control
parameter µ is log

(
2ρM

ρm
sMPM + 1

)
= 11.55 < log(µ) ≤

sm = 15 in this example. With normalized packets weights
(normalization factor is 300), we simulate the generated revenue
as a function of log(µ). We see from Fig. 4 (b) that our
online algorithm achieves a revenue close to the upper bound
of the optimal off-line algorithm (we compare our scheme with
the revenue upper bound, i.e., the total normalized revenue,
rather than the actual revenue of the off-line algorithm due to
the extremely high complexity of the calculation of the off-
line algorithm). Note that log(µ) is in the denominator of the
competitive ratio by Theorem 3, so this result is consistent with
the theorem.

Similarly, for another choice of slack times, generated
uniformly at random between 0 and 5, when the condition
PM < 2sm−1

2sM

(
ρM
ρm

) is violated, our online algorithm still achieves

more than 80% of the upper bound with appropriately chosen
log(µ).

From examples (a) and (b), we can see that the assumption
PM < 2sm−1

2sM

(
ρM
ρm

) , the theoretical region of µ, the weight

normalization factor and the admission control component are
only needed to prove the worst-case bound. In practice while
the theoretical constraints are relaxed, the control parameters
can be appropriately tuned for different scenarios so that our
algorithm has efficient performance.

Finally, we consider a line network 1 → 2 → 3 → 4 with
four nodes and 3 links (identical link rates of 1 packet/time
slot). The arrival sample is periodic with 6 slots as a period. In
slot 1, packet k1 arrives at node 1 with destination 4, deadline
6 and weight 100, and k2 arrives at node 1 with destination 2,
deadline 1 and weight 90. In slot 2, k3 arrives at node 1 with
destination 2, deadline 2 and weight 1. In slot 3, k4 arrives at
node 1 with destination 2, deadline 3 and weight 1, k5 arrives
at node 2 with destination 4, deadline 5 and weight 200, and k6

arrives at node 2 with destination 4, deadline 4 and weight 1.
In slot 4, k7 arrives at node 1 with destination 2, deadline 4 and
weight 1, and k8 arrives at node 2 with destination 4, deadline
5 and weight 50. This arrival pattern repeats every 6 slots, until
a total of 10000 packets arrive. We use the normalization factor

F = 12 for the packets weights in the algorithm. It is easy to
calculate the optimal weighted revenue 10000

8 ∗ (100 + 90 +
200 + 50 + 1 + 1) ∗ 12 = 6.6 × 106. We compare our online
algorithm with two well known algorithms EDF and LWF. In
EDF, each link transmits the packet with the earliest deadline
among the packets with nonnegative slack time every time slot.
In LWF, each link transmits the packet with the largest weight
among the packets with nonnegative slack time every time slot.
Note that the condition PM < 2sm−1

2sM

(
ρM
ρm

) is already violated

for this arrival sample. By choosing log(µ) = 10, we have
that the total revenue of successful reception for our online
algorithm is 5.9 × 106, for EDF is 5.3 × 106 and for LWF
is 4.4 × 106. This means our algorithm outperforms EDF and
LWF, and achieves about 90% of the off-line performance. This
example also shows that our provably efficient online algorithm
is more robust than EDF and LWF for a general network and
arrival sample.

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

log(Normalization Factor of Weights)

T
ot

al
 S

uc
ce

ss
fu

l R
ec

ep
tio

n

Optimal Offline
Optimal Offline (Violate Assumption)
Online
Online (Violate Assumption)

(a)
0 10 20 30 40 50 60

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

8

log(µ)

T
ot

al
 R

ev
en

ue
 o

f S
uc

ce
ss

fu
l R

ec
ep

tio
n

Upper Bound of Optimal Offline
Online
Online (Violate Assumption)

(b)

Fig. 4. (a) Performance of Online Algorithm with Different Normalized
Packets Weights, and (b) Performance of Online Algorithm with Different
log(µ)

VI. CONCLUSION

In this paper, we studied the packet scheduling problem
with hard deadline constraints in multihop networks. We first
show that WC-EDF has the same performance as the optimal
off-line algorithm in maximizing the throughput given any
feasible arrival sample path for the uplink tree topology. We
then proposed an on-line joint admission control and packet
scheduling algorithm that requires only information on the route
of each packet in the calculation and has provable competitive
ratio to the optimal off-line algorithm in maximizing the
weighted revenue. Furthermore, we show through numerical
examples that our algorithm usually performs much better than
the theoretical worst-case lower bound. As future directions,
we will investigate whether the competitive ratio of our on-
line algorithm is the highest achievable among all on-line
algorithms for the general network topology. Furthermore, we
are extending the competitive admission and packet scheduling
framework to a wireless network setting, in which we need to
take into account the scheduling constraints as well.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms For Multiprogram-
ming In a Hard-Real-Time Environment,” Journal of ACM, vol. 20, pp.
46–61, 1973.

8

[2] M. Dertouzos, “Control Robotics: The Procedural Control of Physical
Processes,” in IFIP Congress, 1974, pp. 807–813.

[3] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
D. Shasha, and F. Wang, “On The Competitiveness of On-Line Real-
Time Task Scheduling,” Real-Time Systems, vol. 4, pp. 125–144, 1992.

[4] G. Koren and D. Shasha, “Dover: An Optimal On-Line Scheduling Algo-
rithm for Overloaded Uniprocessor Real-Time Systems,” SIAM Journal
of Computing, vol. 24, pp. 318–339, 1995.

[5] A. Bar-Noy, J. A. Garay, and A. Herzberg, “Sharing Video on Demand,”
Discrete Applied Mathematics, vol. 129, no. 1, pp. 3–30, 2003.

[6] M. Goldwasser and B. Kerbikov, “Admission Control with Immediate
Notification,” Journal of Scheduling, pp. 269–285, 2003.

[7] S. Chen, L. Tong, and T. He, “Optimal Deadline Scheduling with
Commitment,” 49th Allerton Conference on Communication, Control and
Computing, September 2011.

[8] J. Ding and G. Zhang, “Online Scheduling with Hard Deadlines on
Parallel Machines,” in 2nd AAIM, 2006, pp. 32–42.

[9] J. Ding, T. Ebenlendr, J. Sgall, and G. Zhang, “Online Scheduling of
Equal-Length Jobs on Parallel Machines,” in 15th ESA, 2007, pp. 427–
438.

[10] T. Ebenlendr and J. Sgall, “A Lower Bound for Scheduling of Unit Jobs
with Immediate Decision on Parallel Machines,” in 6th WAOA, 2008, pp.
43–52.

[11] N. Thibault and C. Laforest, “Online Time Constrained Scheduling with
Penalties,” in 23rd IEEE Int. Symposium on Parallel and Distributed
Processing, 2009.

[12] S. P. Y. Fung, “Online Preemptive Scheduling with Immediate Decision or
Notification and Penalties,” in the 16th Annual International Conference
on Computing and Combinatorics, ser. COCOON10, 2010, pp. 389–398.

[13] T. Ling and N. B. Shroff, “Scheduling Real-Time Traffic in ATM
Networks,” in Proc. of IEEE INFOCOM, March 1996, pp. 198–205.

[14] B. Hajek, “On the Competitiveness of On-Line Scheduling of Unit-
Length Packets with Hard Deadlines in Slotted Time,” in Conference
on Information Sciences and Systems, Johns Hopkins University, March
21-23 2001, pp. 434–439.

[15] B. Hajek and P. Seri, “Lex-Optimal Online Multiclass Scheduling with
Hard Deadlines,” Mathematics of Operations Research, vol. 30, no. 3,
pp. 562–596, August 2005.

[16] M. Andrews and L. Zhang, “Packet Routing with Arbitrary End-to-End
Delay Requirements,” ACM Symposium on Theory of Computation, pp.
557–565, 1999.

[17] P. P. Bhattacharya, L. Tassiulas, and A. Ephremides, “Optimal Scheduling
with Deadline Constraints in Tree Networks,” IEEE/ACM Transactions on
Automatic Control, vol. 42, no. 12, pp. 1703–1705, December 1997.

[18] B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput Competitive Online
Routing,” in Proc. of the 34th Annual Symposium on Foundations of
Computer Science, November 1993, pp. 32–40.

[19] S. Hariharan and N. B. Shroff, “Maximizing Aggregated Information in
Sensor Networks Under Deadline Constraints,” IEEE/ACM Transactions
on Automatic Control, vol. 56, no. 10, pp. 2369–2380, 2011.

[20] S. S. Panwar, D. Towsley, and J. K. Wolf, “Optimal Scheduling Policies
for a Class of Queues with Customer Deadlines to the Beginning of
Service,” Journal of ACM, vol. 35, no. 4, pp. 832–844, 1988.

[21] S. Shakkottai and R. Srikant, “Scheduling Real-Time Traffic with Dead-
lines Over a Wireless Channel,” Wireless Networks, vol. 8, no. 1, pp.
13–26, January 2002.

[22] A. Dua and N. Bambos, “Downlink Wireless Packet Scheduling with
Deadlines,” IEEE Transactions on Mobile Computing, vol. 6, no. 12, pp.
1410–1425, December 2007.

[23] I. H. Hou and P. R. Kumar, “Scheduling Heterogeneous Real-Time Traffic
over Fading Wireless Channels,” in Proc. of IEEE INFOCOM, San Diego,
CA, March 2010.

[24] V. Raghunathan, V. Borkar, M. Cao, and P. R. Kumar, “Index Policies for
Real-Time Multicast Scheduling for Wireless Broadcast Systems,” Proc.
of IEEE INFOCOM, pp. 1570–1578, April 2008.

[25] Q. Liu, X. Wang, and G. B. Giannakis, “A Cross-Layer Scheduling Algo-
rithm with QoS Support in Wireless Networks,” IEEE/ACM Transactions
on Vehicle Technology, vol. 55, no. 3, pp. 839–847, May 2006.

[26] J. J. Jaramillo and R. Srikant, “Optimal Scheduling for Fair Resource
Allocation in Ad Hoc Networks with Elastic and Inelastic Traffic,”
IEEE/ACM Transactions on Networking, 2011.

[27] Z. Mao, C. E. Koksal, and N. B. Shroff, “Online packet scheduling
with hard deadlines in wired networks,” Tech. Rep., 2012. [Online].

Available: http://www.ece.osu.edu/˜maoz/Infocom2013.pdf

APPENDIX A
PROOF OF THEOREM 2

We provide an outline of the proof here. For a more detailed
version, we refer the readers to [27]. Let policy p∗ be a work
conserving optimal off-line policy. Suppose T0 is the first time
slot in which policy p∗ differs from WC-EDF p. Then, all the
nodes in the network have the same set of packets in all slots
before slot T0. We show that WC-EDF p is optimal for any
under-loaded arrival sample by induction. Choose T − 1 > T0

and let the following holds as hypothesis ∀t ∈ (T0, T − 1]:
1) There is no packet expiring under p at the end of slot t;
2) The total number of packets at any node n under policy p∗

and p are the same at the end of slot t. Any packet k at any
node n under policy p can be paired with a packet k∗ at the
same node n under policy p∗ at the end slot t;
3) For any packet pair (k∗0 , k0) at any node n at the end of slot
t, there is a sequence of packet pairs (k∗0 , k0), . . . , (k∗i , ki) at
node n and its descendent nodes so that dk∗1 ≤ dk0 , . . . , dk∗i ≤
dki−1 , dk∗0 ≤ dki if i ≥ 1 and dk∗0 ≤ dk0 if i = 0.

It is easy to show that the base case holds (details in [27])
and we need to show that hypothesis 1)-3) hold for T . At
the beginning of slot T , all nodes have the same amount
of packets under p∗ and p by the hypothesis. We use the
following rule to pair the transmitted and remaining packets:
If (k∗, k) forms a packet pair at the beginning of slot T , and
k∗, k are transmitted by node n in slot T under policy p∗

and p, respectively, then (k∗, k) still forms a packet pair after
transmission. If (k∗, k) forms a packet pair at the beginning of
slot T , k∗ is transmitted by node n in slot T under p∗ but k
is not transmitted by p, since the total number of transmitted
packets are the same for both policies, there must exist another
packet pair (q∗, q) at node n so that q is transmitted by node
n in slot T under p but q∗ is not transmitted p∗, then (k∗, q)
is a transmitted packet pair by node n in slot T and (q∗, k)
is a remaining packet pair after transmission. New arrivals
form common packet pairs. Consider an arbitrary node n
and suppose the capacity of the link between node n and its
parent node is 1 without loss of generality. If the link capacity
is c, then repeat the same arguments c times. Let k∗ and q
denote the transmitted packets by node n under policy p∗ and
p, respectively. Without loss of generality, we assume (k∗, k)
and (q∗, q) form different packet pairs at the beginning of
slot T , i.e., the end of slot T − 1. Consider any packet pair
(k∗0 , k0) (assume this packet pair is at an arbitrary node m)
in the network and by hypothesis 3) for slot T − 1, (k∗0 , k0)
has a sequence of packet pairs (k∗0 , k0), . . . , (k∗i , ki) at node
m and its descendent nodes at the beginning of slot T so that
dk∗1 ≤ dk0 , . . . , dk∗i ≤ dki−1 , dk∗0 ≤ dki

if i ≥ 1 and dk∗0 ≤ dk0

if i = 0. We have the following cases:
I) The sequence (k∗0 , k0), . . . , (k∗i , ki) does not contain the
packet pairs (k∗, k) and (q∗, q), then the reforming of (k∗, k)
and (q∗, q) and the transmission of (k∗, q) do not influent the
packet pair (k∗0 , k0);
II) The sequence (k∗0 , k0), . . . , (k∗i , ki) contains the packet

9

pair (k∗, k) but does not contain (q∗, q). This means node n
is node m or a descendent node of node m. By hypothesis
3) for packet pair (q∗, q) in slot T − 1, there is a sequence
(q∗, q), . . . , (q∗j , qj) at node n and its descendent nodes
so that dq∗1 ≤ dq, . . . , dq∗j ≤ dqj−1 , dq∗ ≤ dqj

. Without
loss of generality, let (k∗0 , k0), . . . , (k∗, k), . . . , (k∗i , ki)
denote the sequence of (k∗0 , k0) that contains (k∗, k), then
(k∗0 , k0), . . . , (k∗, q), (q∗1 , q1), . . . , (q∗j , qj), (q∗, k), . . . , (k∗i , ki)
is a sequence of packet pairs at node m and its descendent
nodes so that dk∗1 ≤ dk0 , . . . , dq∗1 ≤ dq, . . . , dq∗ ≤
dqj

, . . . , dk∗i ≤ dki−1 , dk∗0 ≤ dki
. If node n is a descendent

node of node m, then after the transmission of packet pair
(k∗, q), hypothesis 3) holds for (k∗0 , k0). If node n is node
m, then packets k0 and q are both at node n at the beginning
of slot T , and dq ≤ dk∗0 by EDF. Then, dq∗1 ≤ dq ≤ dk∗0
and (k∗0 , k0), (q∗1 , q1), . . . , (q∗j , qj), (q∗, k), . . . , (k∗i , ki) is a
sequence of packet pairs at node n and its descendent nodes
that satisfies hypothesis 3) after transmission of (k∗, q).
Similarly, if the sequence (k∗0 , k0), . . . , (k∗i , ki) contains the
packet pair (q∗, q) but does not contain (k∗, k), hypothesis 3)
also holds for (k∗0 , k0) at the end of slot T ;
III) The sequence (k∗0 , k0), . . . , (k∗i , ki) contains the packet
pairs (k∗, k) and (q∗, q) (details are in [27]).

Therefore, by repeating the above argument for all transmit-
ted packet pairs, hypothesis 3) holds for all packet pairs at the
end of slot T . Suppose a packet k at any node n is expiring
under policy p at the end of slot T , then there is another packet
k∗ with dk∗ ≤ dk and k∗ is at node n or its descendent node by
hypothesis 3), i.e., k∗ is also expiring which contradicting the
optimality of policy p∗. Therefore, there is no packet expiring
under p at the end of slot T , i.e., hypothesis 1) holds. Note that
the total number of transmitted packets and received packets are
the same under both policies in the uplink tree network and no
packets expire under both policies, then the total number of
packets at any node under both policies are the same at the
end of slot T , i.e., hypothesis 2) holds.

APPENDIX B
PROOF OF LEMMA 2

Suppose j is the first packet that is accepted by Algorithm 1
but there exists l ∈ Pj so that all time slots in the interval
[aj + (hl(j) − 1)sj , aj + hl(j)sj − 1] are occupied by other
accepted packets when j is accepted. From Eqs. (3) and (6), we
have λl(j, j) = 1 and cl(j,j)

sj
= µλl(j,j) − 1 ≥ µ− 1. Note that

Ĩl(j, j) = 1 by Equation (9), combined with Equation (13),
we then have

∑
l′

∑
i′≤j

Ĩl′ (i
′,j)

si′
cl′(i′, j) ≥ Ĩl(j,j)

sj
cl(j, j) =

cl(j,j)
sj

≥ µ − 1 > ρj , i.e., j is rejected by Algorithm 1 which
is a contradiction.

APPENDIX C
PROOF OF LEMMA 3

For any j ∈ Q, from Algorithm 1 and the fact that
cl(i, j) is increasing in j, given any i and l, i.e., cl(i, j) ≤
cl(i, k), ∀l, i if j ≤ k, we have ρj <

∑
l

∑
i≤j

Ĩl(i,j)
si

cl(i, j) ≤∑
l

∑
i

Ĩl(i,j)
si

cl(i, j) ≤
∑

l

∑
i

Ĩl(i,j)
si

cl(i,K).

Consider any packet i and any link l ∈ Pi, if i is rejected
by Algorithm 1, then Ĩl(i, j) = 0, ∀j 6= i and Ĩl(i, i) = 1, we
then have

∑
j∈Q

Ĩl(i,j)
si

≤ 1
si

; otherwise, we have Ĩ(i, j) = 1
only for j with ai + (hl(i) − 1)si ≤ dj − |Pj | + hl(j) and
aj + hl(j) − 1 ≤ ai + hl(i)si − 1. Let t∗l (j) be the time slot
in which packet j is transmitted through link l ∈ Pj under
the optimal off-line algorithm. Note that t∗l (j) ∈ [aj + hl(j)−
1, dj−|Pj |+hl(j)] since this interval is the maximum allowable
transmission interval for the successful reception of j under all
algorithms. Furthermore, if t∗l (j) < ai+(hl(i)−1)si−Sj+1 or
t∗l (j) > ai+hl(i)si−1+Sj−1, then it means dj−|Pj |+hl(j) ≤
t∗l (j)+Sj−1 < ai+(hl(i)−1)si or aj+hl(j)−1 ≥ t∗l (j)−Sj+
1 > ai +hl(i)si− 1, i.e., Ĩ(i, j) = 0. Therefore, we must have
t∗l (j) ∈ [ai +(hl(i)−1)si−Sj +1, ai +hl(i)si−1+Sj−1] if
Ĩ(i, j) = 1, then

∑
j∈Q

Ĩl(i,j)
si

≤ 2Sj+si−2
si

. By summing over
all j ∈ Q and combining with the fact Ĩl(i, j) = 0, ∀l /∈
Pi, we have

∑
j∈Q ρj <

∑
l

∑
i cl(i,K)

∑
j∈Q

Ĩl(i,j)
si

≤(
2SM

sm
+ 1

) ∑
l

∑
i cl(i,K), where SM = maxi Si is the

maximum link delay among all packet and sm = mini si is
the minimum average slack time among all packets.

APPENDIX D
PROOF OF LEMMA 4

Note that for any l, i and j ∈ A, we have

cl(i, j + 1)− cl(i, j) = siµ
λl(i,j)

(
µ

Il(i,j)
si − 1

)

=siµ
λl(i,j)

(
2log(µ)

Il(i,j)
si − 1

)
≤ µλl(i,j)Il(i, j) log(µ)

=
(

cl(i, j)
si

+ 1
)

Il(i, j) log(µ), (14)

where the inequality is from Equation (11) and the fact 2x−1 ≤
x, x ∈ [0, 1]. The last equality is from Equation (5).

Recall that Il(i, j) ≤ Ĩl(i, j), ∀i, j, l by Equation (3) and
Equation (8); cl(i, j) ≤ cl(i, i), ∀i > j by Equation (5),
Equation (7) and Equation (3); and

∑
l

∑
i≤j

Ĩl(i,j)
si

cl(i, j) ≤
ρj , ∀j ∈ A from Algorithm 1. From Equation (3), we
have

∑
i Il(i, j) =

∑
i∈A Il(i, j), ∀j ∈ A. From Lemma 2,

tl(i) ∈ [ai + (hl(i) − 1)si, ai + hl(i)si − 1] for any i ∈ A.
Note that in order to have Il(i, j) = 1, we must have
ai + (hl(i) − 1)si ≤ tl(j) ≤ ai + hl(i)si − 1. For any i ∈ A,
if tl(i) < tl(j)− si + 1 or tl(i) > tl(j) + si− 1, then it means
ai +hl(i)si−1 ≤ tl(i)+si−1 < tl(j) or ai +(hl(i)−1)si ≥
tl(i)− si + 1 > tl(j), i.e., Il(i, j) = 0. Therefore, if Il(i, j) =
1, ∀i ∈ A, then tl(i) ∈ [tl(j) − si + 1, tl(j) + si − 1], i.e.,∑

l

∑
i Il(i, j) =

∑
l

∑
i∈A Il(i, j) ≤ 2|Pj |si ≤ 2|Pj |sM ≤

ρj using Equation (12), and
∑

i∈A
ρi

ρj
Il(i, j) ≤ 2ρM

ρm
sM .

For any l, i and j ∈ A, by summing over l and i of
Equation (14), we have

∑
l

∑
i

[
cl(i, j + 1) − cl(i, j)

]
≤

2
(
1 + sM

ρM

ρm

)
log(µ)ρj (detailed steps can be found in [27]).

Combined with cl(i, j + 1) − cl(i, j) = 0, ∀j /∈ A, we have∑
l

∑
i cl(i,K) =

∑
l

∑
i

∑
j∈A

[
cl(i, j + 1) − cl(i, j)

]
≤

2
(
1 + sM

ρM

ρm

)
log(µ)

∑
j∈A ρj .

